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TECHNICAL NOTE 4282

BOUNDARY-LAYER STABILITY DIAGRAMS FOR ELECTRICALLY
CONDUCTING FIUIDS IN PRESENCE OF A
MAGNETIC FIELD

By Vernon J. Rossow
SUMMARY

The effectiveness of a magnetic fileld in stablilizing the laminar
flow of en incompressible, electrically conducting fluid 1s studled.
The neutral stabllity curves pertaining to a two-dimensiomal sinusoldal
disturbance are presented for flow over a semi-infinite flat plate In
the presence of elther a coplanar or transverse megnetlic field and for
channel flow 1n the presence of & coplanar magnetic fleld. As is to be
expected, the magnetic field stabllizes the flow unless the veloclty
profile 1s distorted by the magnetic fleld to an Iinherently umstable
shaepe. This occurs when a transverse magnetic fleld 1s fixed relstlive
to & seml-infinlite flat plate.

INTRODUCTION

Mere mention of the possibility of controlling the motion of
electrically conducting fluide with a magnetic fleld stimulates one's
imagination to concelve flow flelds which mey furnish certaln idesl char-
acteristics. All too often the configurations are too compliceted to be
emensble to analyslis and one must be content with a greatly simplified
version of the orlginal idea. A survey of the literature shows that a
number of baslic solutions are belng accumulated. A large portion of the
effort 1s dlrected at the theoreticel evaluation of the effectiveness of
a magnetic fleld in stabllizing a given laminar flow so that transition
to turbulent flow is Inhiblted. Some of the earllest work on problems
of. this type was carrled out by S. Chandrasekhar. He found that a mag-
netic fleld would Inhiblt the onset of convection in a fluld heated from
below (ref. 1), and would impede the transition to turbulence of fluid
between rotating cylinders of nearly the same diameter (ref. 2). In a
later paper, reference 3, it 1s found that a lasyer of fluld heated from
below and subject to rotetion is, under certain condltlons, destabllized
by application of a small magnetlc field. The motlon is stabilized by
Increasing the magnetic fleld strength beyond a certain amounmt.

The effect of a magnetic fleld on the stebllity of the flow of en
Incompressible electrically conducting fluld in a two-dimensional channel
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hes been studied for a coplansr magnetic field by Stuart (ref. L4) and for
a transverse magnetic f£ield by Lock (ref. 5). The trensverse magnetic
field is found to be the more effective in stabllizing the flow field.
The high degree of stabilization brought about is attributed (to the
order of accuracy of. the anslysis) entirely to the change in the velocity
profile caused by the Interaction of the fluld and magnetic field. When
the magnetic~field lines are parallel to the stream directiom, the favor-
able effect on the stabllity of a disturbence is brought about by the
electromotive resistance encountered when a fluld element leaves 1ts
normal path of motion in an effort to form s turbulent eddy, thereby
crosging magnetic llnes of force.

The effect of a coplanar magnetic field on the steblility of a laminar
mixing region was studied by Curle (ref. 6). The Reynolds numbers at
which a small disturbance becomes unstable are generally quite smell for
this type flow fleld (generally less than 100) but increase rapidly with
Increasing megnetic parameter. Complete stablilization 1s predicted for
a magnetic parameter over 0.301.

An experimental example of flow instablllity caused by a magnetic
field is given by Lehnert in reference 7. It is found that a shellow
layer of mercury over a copper disk with two concentric copper rings is
destabllized by application of & vertical magnetlc field. The rotation
of the lmner copper ring produces a shear layer in the mercury which is
intengified by the magnetic field to the extent that an eddy-type flow
results. It is pointed out by Lehnert that-a generallzation concerning
the effect of a magnetlc field on the flow field cannot then be made,
and each situetlon must be studled to find out 1f the beginning of empll-
fication of a disturbance 1s actuaslly delayed to & higher Reynolds number
by the magnetlc f£ield.

The flow of an incompressible electrlically conducting fluld over a
semi-infinite flat plate in the presence of a magnetic field perpendicular
to the surface of the plate was studied in reference 8. The effect of
the megnetic fleld on the stability of the flow has not as yet been
studied for the céd®e when the magnetic lines of force are perpendicular
to or allned with the stream dlirection. It is the intent of this paper
firstly to present an analysis of the stabilizing effect brought about
by a coplansr megnetic fleld acting on an electrically comducting fluid
flowing over a semi-infinite flat plate., The analysis is restricted to
infiniteslimal sinusoidal disturbances of the Tollmien-Schlichting type.
In the course of the lnvestigation it 1e necessary to evaluate a large
portion of the numerical work for the corresponding two-dimensional chen-
nel problem, BSince the method of analysie is slightly different from
that of reference L4, these results are presented. Secondly, the effect
of a transverse msgnetic fleld is considered. As was found for the chan-
nel (Lock, ref. 5), the change in the critical Reynolds number,for the
flat plate 1s controlled primerily by the change in the veloclity profile
brought about by the interaction of the fluid and magnetlic field. The
veloclty profile shapes which are consldered are taken from the two
simplest cases analyzed in reference 8. The first case assumes that



NACA TN 4282 : 3

the transverse magnetlc fleld is fixed relastlive to the plate and the
second that 1t 1s fixed relative to the fluid far from the plate.

The method of snelysls which is used l1s patterned after the procedure
developed asnd descrlbed by C. C. Iin in references 9, 10, and 11. A his-
tory of the development and of the wvarlous physical problems which have
been studied is glwven in a monograph by Idn in reference 12. A brief
outline of the method is glven 1n the introductior to the present analy-
sls. The neubral stabllity curves are presented for several values of
the magnetic parameter.

SYMBOIS
a l-c
B lmposed magnetlc inductlon
c wave speed of disturbance
F(z) THetjen's function (see eq. (19))
052
m magnetic parameter, _U—’ per unlt length
PV
P pressure
:’91’} inviscid perturbation amplitude fumections (see eq. (8))
,l LN J
88U,
R Reynolds number based on boundary-layer thickness, ==
Ryx Reynolds number based on dlstence from leading edge of
flat plete, "t Uee
u x component of veloclty
i}
U —
U
i) velocity in the stream directlon of the flow fleld to be
perturbed
v y component of wveloclty

X,y rectangular coordinates
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z Yo(Uo'aR)™ ®
a wave number of disturbance
a*ky
B boundary-layer thickness, 6 T
o0
c S
(G.R)ll 3
¥ perturbation stream functiom ..
P amplitude function
v kinematic viscoslty
y=Yo
1 €
p density of fluld
o4 electricel conductivity

:E:g: 3((::')’} viscous perturbation stream functions (see eq. (16))

Subsecripts
oo edge of boundsry layer, or free stream
o - critical layer wvhere U=c¢ - B
a disturbance
Superscripts
- vector

' derivative with respect to ¥y

* dimenslonal quantities

Wl
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ANALYSIS

The present state of stabllity theory requlres that a number of
simpliifications be made in the analysis so that the method can be applied
to physical situstions without a prohibitive amount of labor. The method
developed by C. C. Lin (refs. 9, 10, and 11) is a compromise between
accuracy and effort requlred to analyze a given flow field. The present
enalysis 1s therefore pattermed after 1t.

Resume of Steps in Analysis

The deslred result 1s a stabllity dlagrem of exclting wave number o
and Reynolds number R. At the beginning, the undisturbed steady-state
polution to the magnetohydrodynemic flow problem being considered is
assumed to be known. This Information together with the equetions of
motion, the continuity equation, Maxwell!s equations, Ohm!s law for a
moving fluld, the electromotive force relation, the wave nature of the
disturbance, plus varlous approximations go to meke up a complex fourth-
order ordinary differentlel equation for the amplitude function ¢. The
various steps will now be explained., Sketch (a.) was deslgned to orlent
the reader 1n the subsequent analysis which, in view of 1ts well
established nature, 1s discussed only brilefly.

The flow fleld 1s af, some time assumed to be a steady two-dimensional
ptream of Incompressible electrically conducting fluid. A two-dimensionsl
Infinitesimal sinusoidal disturbance of a glven wave number o 1s then
Impressed on the fluid to test for the stabllity of the stream. A sinus-
oidel disturbance 1is chosen because many disturbances which are likely
to occur in nature cen be Fouriler snalyzed and thereby reduced to a sum
of slnusoidal disturbances. The magnitude of the disturbance is assumed
to be vanlshingly smgll or infinitesimsl so that the analysis msy be
simplified by retalning only those terms which are linear in a disturbance
or perturbation quantity. The wave nature of the disturbance is Intro-
duced by the dlsturbance streem function

where o%* 1is the wave number, c¥*¥ 1s the veloclty of the wave In the
stream direction, end c4¥*¥ 1s the rate of growth of the wave amplitude.
The disturbance velocities are then given by u* = dy/dy* and

vE = -(a\y/Bx*). The starred quantlitles have physicel dlmensions, whereas
the unstarred counterparts have been made dimenslonless by dividing by
the free-stream veloclty Uy, or by the boundary-layer thickness 8 as
the case may be. It 1s assumed that the dlsturbence veloclty and
magnetic-field components are characterized by this exponential and
depend on 1t to a filrst power. The object of the anslysis is to find



6 NACA TN 4282

the conditions vhen the wave will just begin to grow* (i.e., will be
nelther damped nor amplified but neutral), the factor ci* of the expo-
nential is set equal to zero and the exponentiel reduces to elo¥(x¥-c¥t),
This function describes the propagatlion of the wave in the stream direc-
tlon for e glven station x* as a function of time. The veloclty of
propagation for a glven dlsturbance l1s independent of the distance elong
and perpendicular to the plate. It remains to find the circumstences
under whlch the wave emplitude nelther grows nor diminishes but 1s neu-
tral. It is found that the neutral point of wave growth occurs whem the
wave speed c¥ 1s equal to the local velocity U of the fluld. The
region in the fluid vwhere this heppens 1s referred to as the "critical
layer" and the distence from the wall as y,¥.

In the actuel flow problem one knows that the disturbance may be
of elther the two-~ or three-dimensional type. It has, however, been
shown by Squire (ref. 1h) thet if the flow flield is umsteble to a three-
dimenslonal dlsturbence it will be umstable -to a two-dimensionel distuxb-
ance at a lower Reynolds number. The extension of this proof to the type
of magnetohydrodynemic problems belng considered here is made by Michael
in reference 15. Only two-dimensilonal disturbances will then be consldered
because they are the most umsteble.

When the information Just described is introduced Iinto the equetions
relevant to the problem, a complex ordinary fourth-order differential
equation is obtained for the emplitude function ¢ (sketch (a)).

It 18 complex because imaginary quentitles are Introduced by the expo-
nential used to describe the perturbations. The terms which contain
products or squares of the disturbance quentities are discarded. It is
elso assumed that the station in questlon is fer enough downstreem so
that the varlisbles are not changing in the free~stream dlrection,

Even though & number of simplifying assumptions are made, the form
of the differential edquatlon ls such that a slmple solutiom has not yet
been found. It 1s necessary then to find four linearly independent solu-~
tions by reducing the complete dlfferential equation to two simpler 4if-
ferential equations by & power series expension in 1/R end e = (1/aR)>/S
as indicated in sketch (a). The zero-order terms in l/R are the only
ones retained. The resulting dlfferentisl equation is sometlmes referred
$o as the inviscid form of the dlfferentiel equetlon because all terms
Involving viscosity have been dropped. Proceeding down to the next step

The stability curves corresponding to & mumber of growth rates s
> 0, have been computed by S. F. Shen (ref. 13) for flat plate end
ennel flow using an extension of ILin's method.
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Camplex fourth-order ordinary differential eguation
foxr

o(y,2,¢,0,m3,R)

sl /‘
@ en(1/ag)™/®

R L B\

Complex fourth-order

differential equation - dlfferential equation -
inviscid functions: viscous functions:
#(y,a,c,U,ms) X[ (7-70) (aR) US; Uo! ]
ot
LN
1 -
* %2 Ey—yo)@a)‘”] ¥z =1|l¥%s = "4""*

[ e
—/ (O) r(z) b:)“:e(s)

Yo¥s' (0)
= Tiet jen's funet:

ayR combinations for neutral
stabllity obtained from constanta
in

P = 2101 + 8202 + 8aQs
with constants chosen so that
®(0) = ¢*(0) = ¢ (1) = O

a ms
Unstahle
Stable
R -

Sketch (a)

in sketch (a), the first two linearly independent solutions ¢, and ¢o
are found by introducing another series which conslsts of positive powers
of the wave number o and vhose coefflclents depend on the wave speed c
end veloeclty U in the flow fleld. Once agaln, only the first few terms
iIn a are retalned.
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The boxes on the right of sketch (a) indlcate that the solution to
the first-order term in the set of differentia.l equatlions which results
from the expansion in € = (l/a.R)’- 1s the only one which 1s found.
As pointed out by Lin, higher order functlons could be found by quadre-
tures but in moet cases sufficlent accuracy ls obtalned by consldering
only the flrst-order term. This dlfferentlal equation has four linearly
Independent solutions which cen be used. Two of these solutions, X5
and Xp, are discarded because they are too simple in form for curved
velocity distributions. An examination of X, or ¢ shows that it
Increases without dmit with y and thereby vlolates the boundary con-
dltion that dlsturbances must die out as ¥y epproaches Infinity. For
this reason it is not used in the problems treated in this paper. The
function @g 18 generally used in the form known as Tetjen's function
(sketck (a)).

The three remalning linearly independent solutlions are then combined
in such a way that the boundary condltions are satisfied. The disturbance
velocities will venlsh at the wall end edge of the boundary layer when

P = 8191 + 8202 + 8303
with the constants a3, 85, and ag chosen so that

9(0) = 9'(0) = 9'(1) =0

This 1s poesible only for a certain combination of o and R when the
magnetic paremeter m8, veloclty distribution U, and wave speed c¢ have
been specified. The end result from several such computations is a graph
of the wave number o versus the Reynolds number R for various velues
of the magnetic parameter mB, Since these curves denote the values

of o and R for neutral stability of the wave, a combination of o and R,
which lies on the side of the curve demoted as unstable, warns that the
smplitude of the disturbance will grow under those cond.itions. In the
stable region the wave is damped.,

The number of approximations which are made might cause one to doubt
the accuracy of the end results. Estimates made by Lin in reference 1l
indicate that the stability curves should not be in error by much more
than a few percent and are therefore accurate emough for most engineering

purposes.

The analysis of the problems being considered in this paper is
presented in the following sectlions, Since the method is well defined
in references 9, 10, and 11, only the essential parts of the analysis
are presented.
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Coplansxr Magnetlc Fleld

Differentlal equation,~ The dlfferentlal equation for the function ¢

wlll now be derived for the magnetlc-fleld lines allned with the stream
dlrection. The result 1s general enough that it can be applied to the
flow in channels and over flat plates. Maxwell's equatlons for the
Incompressible-flow problems belng considered are

- h
DivE =0
ﬁiv%:@ (
- 1)
Curl & = kr) (
- A
Curl E = = -
ot J

vhere E, _E', -5, and p are the electric fileld Intenslty, magnetic inten-
glty, electrlic current density, end magnetlc permeabllity, respectlively,
Ohm's law for a moving fluld is

J =0 +Tx3B) (2)

vhere -:E = p-.'E’ and -ﬁ is the local veloelty vector. The equation of
continulty is

Div T =0 (3)

The Navlier-Stokes equatlon modified to include the electromotive
force term (so-called Lorentz force) arising from the relstive motion
between the fluld and megnetic fleld 1s

-
U - 1 > = 1
a—t+(-’-g:'a.d.)U-b—(JxB)+Egra.d;p=W5(} (&)
where the excess charge density and epplled electric field are assumed
to be zero.

The relatlon between the Input wave number, o, of the disturbance
end the Reynolds number, R, of the flow at whlch the amplitude of the
disturbsnce neilther increases nor decreases (meutral) will be fowmd by
introducing the quantities,
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w* = T 4 ug*(y*) elo*(x¥-ckt) W
v o vd*(y*)eim*(x*-c*b)

B+ b(y*)eid'*(x*'c*b) > (5)
B (y*)eia,*(x*-c*b)

Bx

By

P* = P 4 p(yr)elon(x¥-c¥t)

vhere c¥ = cp¥ 4 lci*. When the disturbance is classified as neubral
(neither emplified nor damped) c4* 18 zero. Since the problem will be
to find only the neutral disturbance curves, the quantity o* will here~
after be used to denote only the real part cp*, that is, the wave speed
of the dlsturbance. The quantity o* is the wave number of ‘the
disturbance.

It will be assumed thsat:

1. The location of the instebility is far enough dowmstream of the
entrance to the channel or leading edge of the plate that the velocity
normal to the bowmdary is negligible in comparison with the velocity
perallel to the boundary.

_ 2. The fluid is of wnliform deneity and conductivity, and the
applied magnetic flield, B, 1s uniform throughout the Fflow field.

3. The boundaries are perfect conductors in order to complete the
clrcult for electric currents in the fluld,

i, Terms which contain products or squares of the disturbance
quantities are negligible.

5. The disturbances are neutrally steble at values of the Reynolds
number high enough so that e series in (1/aR)*/® converges respldly.

Following the method used by Stuert in reference 4, equations (1)
through (5) may be combined end simplified using the foregoing essump-
tlons to yleld a complex ordinary dlfferential equation for the dimen-
slonless ampllitude fumection ¢.

(U=6) (0"-a29) - QU + 1mbag = ;2= (9™ -20Pgisaty)  (6)

vhere m = oB2/pl,, R = 8Uy/v, and U denotes the local velocity divided
by the velocity at the edge of the boundary layer, Uyg. The symbols o
and c¢ in equation (6) denote the dimensionless form of the wave num-
ber o* and wave speed c¥, respectively. The emplitude Ffunction ¢
is a function of y = y*/8. The primes denote differentiation with
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respect to the distence y normal to the nearest bounding surface.
Hereafter, only the dimensionless unstarred quantlties wlll be used in
the analysls unless 1t 1s noted otherwlse.

The boundary conditlons are,
P=0 =0 et y=0

or

at center of channel, y = 1
=9 =0 {
at ¥y = » for the flat plate

Four llnearly independent solutions to equation (6) will now be
found by the technlque explalned in references 9, 10, and 1ll. The flrst
two solutions, @y and @o, Will be derived from a serles expansion in 1/R
end are designated as the inviscld solutions. The two remalning solutions
93 and g4 result from a series expansion In € = (l/d.R)lls and are
called the viliscous solutions.

Inviscld solutions.- If the terms involving 1/cR in equstion (6)
are assumed small, the remalning terms constitute the dlfferentlal
equation which ¢ and @ must satisfy.

(U-c) (9" %) - qU" + imBag = O (7

A solution to equation (7) is found by the method of Helsenberg
(see, e.g., ref. 12), It is assumed that the solution is of the form

@ =0y + 03 + 0Pgp + a®gg + . . . (8)

When equation (8) is inserted into equation (7) and the terms conteining
the same power of o are equated, the following set of lineer ordinary
dlfferential equations is found.

Q! - E‘j'_; =0 (9a)
w _ U0 _ _imd

% U-c . U-c (9p)

q;:{ - U—‘[—j": qﬂ =gn.p - '[Ti??; On-1.s n= 2, 3, ¢« o @ (9n)

The two linearly independent solutlons of equation (9a) are
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Qo =U ~¢ (10e)

¥
%o = (U-c)‘/‘: -—dL—(U-c)a (10p)

The two invisecld solutions for the function ¢ mey then be written
as

%) = (ve) [1 402 [ 7 f (U-c)*ayety; +

[+ (U-c)

4 1 2 72 4 ¥s R .
‘f (U-c)! (U-c) j; W£ (U~c) ayslyady26yr + « - .] -

(U=c) {:Lm&!. [f o) f (U-c)dyadys +

f e f}':.( _c)aj; (U1)2£YS(U¢)W4GV3W26¥1 F. .]... . . ,}.,. ...

(11)
and
o2(y) = (U-c) {L/;y'(‘u—d_f)—g (U )a£ (U-c )2‘[ )2 dyadyedys + « o . =
m[j;y(u__];)z' )f )aﬁsﬁadﬁ.*‘"']"‘"'}"'"' (12)

vhere only linear terms in m3 have been retained.

The integrals in equations (11) and (12) may be changed to a more
convenlent form by the transformation employed by ILdn In reference 1l.
At the wall, y = O, and at the edge of the boumdary layer, y = 1, the
inviscid functions and thelr derlvatlves then become

91(0) = ~c ]

¢! (0) = U'(0)

* } (13)
92(0) =0

9.(0) = - ]E-‘ J
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where

m(1) = - ia; - imba(l-e)ps + . . .
e, (1) = lil_'c [GFHJ'-TM:; — - imda(py+aPpat . . -)]

e=2(1) = (1-c) [I_ISL__ - o®Ng + Imda(gs¥Kipo- . . .)]

o (1) = l}c {a'ai_{l-.ﬂi;:fgza . - +l-c®Hp -... -

imm[Kl(plmaps+ « ¢ ¢) =P ~.. ]} J

P1 =fl(U-°)5¥

(s}

1 1 ML R _
yo 2 =j: Wj; (U~c)dyzdy,

1 ¥ J2
Ps =j: (U-°)2£ ITIT-EJEKE (U~c)dysdyzdy,

L Py [Pl ayedyady
= [ —— -c
g2 J; (U-c)a-./; Vo (U-c)? sEvL
1
H = f (U-c)2ay
(o}

o1 e 2
Ho =L/; (—U—_—CF]; (U~c)“dyody,,

1 2 1 1 Y2 2
Mo = f (U=c) = f (U-c)2ayadyadys
(o] T o]

13

> (14)

(15a)

(15b)

(15¢)

(154)

(15e)

(15£)

(158)
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1 e a2 [ 1

Ns j; (U-c)z-[; (U-c) "/;'2 (Ueo) dysdy=dys (15h)
1 1 )

e[ (251)

The path of Integration, according to
N reference 10, lles along the reel Yy eaxis with
an indentation slong a semlclircular path under
the singular point, ¥y = y, (i.e., where U = c)
as shown in sketch (D).

U=c Viscous solutions.- The two remaining
1) ) 0 Jr independent solutlons, the so-called viscous
solutions ¢y and @4, are found by introducing
Sketch (D) the small paremeter e = (1/aR)1/3 end the

function X as
en =¥ - Yo A

o(y) = X(o)(n) + ex(l)(n) +-eax(2)(n) + o0 > (16)

n
o 2 .
U-0=Ué(€n)+5!-(€ﬂ) Foeoe

4

The subscript o Indicates that the quantity 1s to be evaluated at the
point where U = c. If the equations (16) are introduced into equation (6)
end the terms containing the same power of. € are equated, the following
set of ordinary differential equations results.

WEKE )+ IXTT = 0 (17e)
W Gy =B - F By Gy Gm
etc.

The solutione to equation (17a) are the only ones in this series
vwhich are found. As pointed out in the Introduction to the analysis
two of these four linearly independent solutions are discarded on the
grounds that they are trivial. It 1s also found that the function X,



NACA TN L4282 15

or @4 Increases with y indefinitely and thereby violates the boundary
condition that the disturbance velocltlies must die out at the edg® of the
boundary layer. The form of the solution required is then

$3(0) _
%00 = -y F(z) (18)

z = y,(ULaR) /2

‘-/;-zd.g LECUZH:L/S [% (1§)3/2:| at

-z »/; Tpveg [i;- (1)*/ 2] at

F(Z) = (19)

end Hysa( ) 1s a Henkel function of the first kind and of order 1/3.
The function F(z) is sometimes referred to as the Tietjen's function.
The tabulated values of references 9 and 16 are plotted in figure 1.
The viscous polution is not modiflied by the presence of the magnetic
field to the order of accuracy of the asnslysis.

The inviscid solutions, equations (13) and (14), together with
equation (18) make it possible to find the change in the neutral
disturbance curve caused by a coplanar megnetic field.

Chennel. flow (parabolic velocity profile).- The flow of a viscous
fluid between parallel plenes (Poiseullle fiow - sketch (e)) glves rise
to a parabolic veloclty profile 1f the statlion in
question 1s not near the entrance to the channel. —] —_——
The effect of a coplanar magnetic field on the — "8 —
growth of a two-dimensional disturbence has already —=MN ==
been studied by Stuart in reference . The differ- —t——
ence between the anslysls carrled out here and in
reference 4 lies in the larger number of terms Sketch (e)
retained here for the inviscid solution ¢; and in
the form of equation (22) which is used to find the proper a~R combina-
tion. The end resulits of the two analyses should, however, be asbout the
same. Since the integrals (15) must be evaluated for a parsbolic veloc-
1ty profile in order to make application to the flat-plete flow fleld,
only & smgll smount of additlonal effort 1s required to find the neutral
dlsturbance curves for the channel.
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The velocity distribution is written es
U=2y-y2 (20)

The integrals (15) can be evaluated in closed form for arbitrery values
of the wave speed c.

el -
- ._< +1 “J L (3a2-20%-1) (21b)
Pa-?(ka—aasl)+3a'zl<8°’ 1na+8°;§:2+3-__2]3';:2>+
224321 (14+8)° [211&2 T <l-3a + §-a'f> m(ha)] +
60a> 180 5 37,
e B e ] (e

© = s ) [;(%:)_2 (2a-1)1n(1re) + 8D (oan) m(J_-a)+3(a=+2)]+

e e () () 3 - LB st}

1;:3 [1';3 1n(1-e?) - ;3 n 28 + 29'(2353' AP (a.a )In <1"' ) 1% (3a2. 253-1)]

(214)

where &2 = l-c, and Ly( ) 1s the dilogarithmic integral. Numerical
values for the relatioms (21) for several values of the parameter c¢ are
presented in table I. The functions Lz are tebulated in references 17
and 18. The remaining integrals in the group (15) are written and
tabulated in reference 11.

It remains now to combine the inviscld and viscous solutions so that
the boundary condltions at the wall and at the edge of the boundary layer
are satisfled. It is found that the wave number of an antisymmetric
disturbance and the Reynolds number of the flow fleld must be chosen so
that
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0, (0) _ -cip'ggl)

(22)
yo[U' (O)gr(1) + = cp:'L(l)]

With all of the individusl funetions known, an ilteration scheme is
employed to find the correct wave number and Reynolds number combination.
A grephical method was used to f£find the interesectlon of the curves of
the functions on the left and right sides of eguation (22) for several
values of the parameter c, whereas a numerical lteration scheme was
used In reference 1l.

The neutral disturbance curves for several values of the magnetic
parsmeter m8 are shown in figure 2(a). Since the parameter mBax was
held constant in the analysis of reference 4, a direct comparison with
the neutrel stabllity curves of that paper cannot be made. The critical
Reynolds numbers found by the two anslyses will be compared In the
discussion.

Flat-plate velocity profile.- When an incompressible viscous fluild
flows past & semi-infinite flat plate of zero thickness, the velocity
profile can be predicted theoretically end
is generally referred to a&s the Blasius pro- y U—

—— i e

file (sketch (d)). The neutral stability - O = by

curve in the nonmsgnetic case has been com- Ua P gt =~ A
puted in references 9, 10, and 11l. The ¢
effect of the magnetic fleld on these x
results will now be foimd. Sketch (d)

The integrals (15e) through (15d), evaluated by the approximate
nmethod suggested in reference 11, are tabulated in table IT for speclfic

values of c¢. The real and imaglnery perts of K; are computed by the
relatlons glven in reference 11 as

1
cUt (0)

2.423e8 + . . L+ 2 (cz +5= %+, ) <7,n S+ :L:r) (23)

Kip = - + 0.1465 + 1.246Tc + 1.045¢2 4+ 2.039¢® + L.OTBct +

Ky = -% .(?"’3_ (24)

The expression which determines the proper values of wave number a
and the Reynolds number R for the flat-plate problem 1s



F(Z) =

c[cpé(j) + aga(1)]
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(25)

o {0 (O)LaL(1) + om0 + £ [932) + amy (1)1}

The neutral stabllity curves for several values of the magnetlc
parameter mB are shown in figure 2(b).

Transverse Megnetic Field

The change In the boundery-layer veloclty profile for flow over a
flat plate In the presence of a transverse magnetlic field was found in
reference 8., It was found that the skin friction and heat transfer are
reduced if the magnetic field is fixed relative to the plate (sketch (e))
end increassed if it is fixed relative to the
fluld outside of the boundary layer

I

Il
L
—f— I - — _-7
T g
2L I S T O O T B I}
Sketch (e)
hp L ] L
e RNl
,s-i—Jr'.*‘!"!’T |
Sketch (f)

assumptions ocutlined in the analysis of the coplanar field.
ential equation for the perturbation stream fumetlon 1s then

(U-c) (p"-a2g) - Uty =

(sketch (£)).

The possiblility exists, however,

that the magnetically induced velocity profile
may be more or less stable to transitlom to

turbulent flow.

An estimate of the change in

the stabllity of an infinitesimal sinusoidal
disturbence induced by the transverse magnetic

field will now be found.

The dlfferential equation for the
disturbance stream function is found by the
technique used by Lock in reference 5 which
is to combine equations (1) through (5) and
then simplify the result by applying the five

Lmd
=

Q" + ﬁ (o™ -2020"+at)

The dlffer-

(26)

It is shown by Lock in reference 5 that the forms of the inviscid
end viscous solutlons are not affected to the order of the analysis by

the additional megnetic term in equation (26).

In other words, the

change in the veloclty profile caused by the transverse magnetic fleld

dominstes the stabllizing action of the magnetic fleld.

The neutral

stability curves for several velues of the magnetic parameter mx are
found by the method outlined In the appendlx of reference l11. The Invis-
cld solutions are found by using the numerical data in tables I and TII
of reference 8 to determine the velocity profiles at mx = 0.05 and 0.10.
The numerical results for the integrals (15e) through (15h) are tabulated

in tables IIT and IV.
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The real part of the integral (15i) i1s evaluated by expending in a
series about the critical point ¥y = y, where U = c. The result vwhich
was used 1n the computations for the transverse magnetic fleld is

11 2 . 1y 2
K = - 0.4 w8 0. 2-v, (un) () o oho.
N o0 k3o (W2 - (wh)® | ¥ ) (u)5 ( 2¥0) +
5 (U)* (0.06k _
1662?;(—3— 0.16yg + °-ll-yoa>+ . . .+
1 1.1 L. [re Ni-c 0.1 (27)

k(1l-c) \ 0.75-c J1i-¢ ll+2 N e

(1-c)®

The imaginary pert K;; 18 evaluated by use of equation (24). The
velocity U in the integrals (15e) through (15n), (24), and (27) is
referred to the velocity at the edge of the boundary layer a“ the partic-
wlar station being considered. When the megnetic fleld is fixed relative
to the plate the umdisturbed stream veloclty and the velocity at the edge
of the boundary leyer are not the same.

The neutral disturbance curves are shown in figures 3(a) and 3(Db).
DISCUSSION

The neutral stebllity curves shown In flgures 2 and 3 Indicate that
the presence of a magnetic field may stabllize or destabilize the flow
of an Incompressible, electricelly conducting fluld. It is seen from
these results that the flow over & flat plate 1s stabllized by elther a
coplanar magnetic fleld or by a transverse magnetic field fixed relative
to the fluld, but & transverse magnetic field fixed reletive to the plate
1s generally destabllizing. The portion near the top of the mx = 0.1
curve in figure 3(a) indicates an opposite trend for a small range in
wave number. As polnted out in the Introduction, another example of
flow Instabllity caused by a magnetic fleld is presented by Lehnert in
reference T,

A glven flow fleld wlll probably contaln disturbances covering a
wide range of waeve number due to imperfections in the walls and entrance
to the flow fleld. A conservatlve value for the critical Reynolds mumber
18 then the lowest value at which 1t 1s first possible for any of the
waves to be amplified. The critlical Reynolds numbers for the flow prob-
lems considered in references 4t and 5 and for the coplanar magnetic-field
cases studled in this paper are shown In figure 4 as a function of the
magnetic parsmeter md. The results for the transverse magmnetic fleld
as & function of mx are also shown in figure 4. It 1s seen that the
results of Stuart in reference L4 are in essential agreement with the
present analysis. The difference between the results 1s attributable
to the smaller number of terms retained in the analysis of reference 4



20 _ NACA TN L4282

for the inviecid solution. The results for a laminar mixing region
obtained by Curle in reference 6 are not shown in figure 4 because the
Reynolds numbers are too. small for the scasle of the graph.

It is quite evident from figure L4 that a magnetic field is more
effective when applled to chemnel flow than to flat-plate flow. In
particular, the transverse magnetic fleld is so effective in stabilizing
the flow 1n a chamnel that the curve 1s a vertical llne to the scale of
the graph.

When the magnetlic field is coplanar, the large difference In the
shape of the critlical Reynolds number curves for the chennel and flat-
plate flow flelds 1s attrlibutable to the infinite extent of the flow
field above the flat plate. As is shown by Lin in reference 9, the
asymptotic form of the disturbance stream functlion as the distance y*
approaches and exceeds the boundery-lasyer thickness, &, Introduces addi-
tional terms 1n the equation determining the neutral stabllity curves.’
This is obvious when equations (22) and (25) are compared. These addi-
tional terms de-emphasize the terms involving the magnetic parameter and
result In a much smaller stabllizing effect for the flat plate than for
the channel flow.

The magnetic parameter and the Reynolds mumber for the flow over a
flat plate at which an infinitesimal disturbance will grow (figs. 2(b)
end 3) are based on the boundary-layer thickness 8 taken® as
6/ NU/vx¥, where T/Uy, = 0.999. The distance along the plate from the
lesding edge 18 then related to the boundary-layer thickness by the
relatlionship

8 = 6x*
Ryex
where, Ryx = Ugx*/v. Therefore,
8 = Gmx*
N Ry
and
R=6 Ry

2gtandard texts on boundary-layer theory usually define the thickness
a8 B = 5/ JUg/vx¥, where U/U, = 0.99. As explsined in reference 11,
more accuracy is achieved by defining a thicker boundery layer to a
evaluate the inviscid integrals.
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It was Pound in reference 8 that a magnetic field perpendicular to
a flat plate changes the veloclity profile in the boundaery layer. ©Even
a smgll msgnetic fleld fixed relatlve to the plate will cause an inflec-
tion point® in the velocity profile near the surface. As is shown in
figures 3(a) and L4, this causes the flow to be less steble with a mag-
netic field than In the nonmagnetic field case., The results in fig-
ures 3(b) and L4 indicate that a magnetic field fixed relative to the
fluid far from the plate changes the veloclty profile to a shepe which
is more stable. The results of reference 8 indicate that the skin Pric-
tion and heat transfer are reduced In the former and Increased in the
latter case. Care must then be exercilsed 1f one attempts to reduce elther
the gkin friction or heat transfer by Imposing a magnetic field across
(perpendicular to) the flow field and not in relative motion with the
plete, because the laminar flow is destabllized by this technique. ILike-
wise, the increase in the skin friction and heat tramsfer brought about
by a transverse magnetic field sweeping past the plate at the veloelty
of the free stream would eventually experience a moderate compensating
effect in the form of increased stabllity of the laminer streem.

The results of this peper, in canjunction with that of reference 8,
point out the fact that it is not certain whether the skin friction and
heat transfer are lowered or raised by using a transverse magnetic field
to alter the flow over & flat plate. The magnetlic fleld slters the
veloclity profile and changes the rate of growth of small disturbances so
that the two effects tend to compensate each other. Individual situstlons
mist then be considered separately to determine whether an advantage can
be achleved.

CONCLUSIONS

The anelysis carried out 1n thls report for the flow over a flat
plate indicates the effect of a magnetlic field on the stabllity of a
disturbance of the Tollmien-Schlichting type. In particular 1t is found
that:

l. The flow 1s stebllized by & coplanar magnetic fleld. The
increase In the critlcal Reynolds number is small compared with the
increase achleved in a channel wlth a coplanar or transverse magnetic
field. '

2. A transverse magnetic fleld fixed relative to the flst plate
chenges the veloclty profile to an inherently umstable shape which lowers
the critical Reynolds number,

31t is noted in figure 3(a) that the meximm value of the wave number
Pirst Increases and then decreases with increasing mx. This is caused
by the rapid change in the curvature of the velocity profile with mx.
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3. A transverse magnetlic field fixed relative to the fluid far from

the plate changes the veloclty profile in the boundary lasyer to a shape
vhich is more stable and thereby raises the critical Reynolds number.
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2.

3.

,4'-

National Advisory Committee for Aerona.ubics
Moffett Fleld, Calif., May 1, 1958
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TABLE I.- COEFFICIENTS FOR INVISCID SOLUTIONS; PARABOLIC
VELOCITY FROFILE (COPLANAR MAGNETIC FIELD)

c Pa1 P2 Ps as
o] 0.666T {0.39T7 {0.09281 ©
.05} .6167| 4101} .0858 [0.6765
1 | 5667 .22k} 07900 ]| .6529
A5 .5167 4351 .0T24T| .66T5
2 | 4667 BuBO| .06617| .TO35
25| M4167| .4615| 06010} .T58T
.3 | 3667} .4756| .05424] .8355
.35} .3167] .4905] .0hk855| .9koL
A | .2667| 5062 .04302{1.0828
A51 .2167| .5230| .03762|1.2818

TABLE II.- COEFFICIENTS FOR INVISCID SOLUTIONS; BLASTIUS

PROFILE (COPLANAR MAGNETIC FIELD)

Pa

P2

Ps

.05
.15
.25
.35
45

7133
.6633

.6133
.5633
.5133
.4633
L4133
.3633
.3133

.2633

-3817
.3941
- L06L
g1
4321
- 4455
4597
4TS5
.hg02
.5070

1272
.1202

<1134

.1068

.10053
.09546
.08860
.08261
.0TT39
.07198

.5603
5367
.5512
5872
642l
. 7192
.8238

1. 1656
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TABLE III.- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC
FIEID FIXED RELATIVE TO PLATE

mx | ¢ | Hy | H Mg | Fs Kip [ Ky | 0 | v,
0.05|0 0.602210.2337(0.07907|0. 1700 -c0 o} 1.8273 |0
.05] .5372} .2225| .06916| .1806}-10.87 |-.0310}1.828L| .027h
1| 4772] .2107] .06052| .1929] -5.32T7 [-.0338{1.8302] .0547
15| .4221| .1983{ .05310| .2044| -3.414 |-.0102}1.8312] .0820
.2 | .3721| .1854} .0h4682] .2158} -2.394 | .0397]|1.8303| .1093
25| .3271| .1718| .ok162| 2266} -1.721 | .1159|1.8263} .1366
.3 | .2870| .1576| .0374Ll| .2385} -1.209 | .219911.8172} .16kl
.35] .2520| .1428| .03409| .2466%F -.TT29] .3553|1.8009} .1917
At .2220] .1274| .03151| .24T2f -.2995] .5209|1.784Lk!| .2197
A5) J1969] 1112 02956 .2389 2253} .7250|1.7509] .24TT
Jdo{o .5733) .2223| .06975| .1732 -0 0 1.6473 |0
.05} .5089} .2111| .05984| .1838}-12.28 |-.091ik|1.6498} .0303
L1 | JBi95| 19931 .05120] .1962f -6.156 |-.1394|1.6556| .0606
51 .3951| .1869) .04378| .2076} -L4.051 |-.1456|1.6625] .0907
2 | 3456 .17h0| .03750| .2190| -2.939 |[-.1132}1.6686| .1207
25| .3012] .1604} .03230| .2298| -2.228 |-.OM4T|1.6T24| .1507
.3 | .2618}1 .1462| .02809} .2417| -1.717 | .0580|1.6T19| .1806
.35¢ .2274] 1314 .024T7T{ .2498] -1.323 | .1950}1.665T7] .2105
A ] .1980| .1160| .02219| .2504] -1.0126| .372611.6520| .2408
451 .1736] .0998| .02024] .2k21| -.783L| .5959]1.6310] .2718
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TABLE, IV.- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC
FIELD FIXED RELATIVE TO FLUID

m | ¢ Hy Ho Ms Ns K1, K1y Ug Yo

0.05|0 0.6458 10.2536 [0.09507 [0. 1704 -0 [0.4537|2.3245 |0
.05] .5753] .2k2o4] .08516| .1810|-7.937 | .4621]2.2862] .0218
1} .5099] .2306| 07652 .193k[-3.699 | .4Th8|2.2481] .0438
JA5f Jhbok| .2182| .06910} .2048|-2.248 | .4936]2.2101| .0662
.2 1 .3940]| 2052 06282} .2162{-1.4584| .5319|2.1707| .0891
.25¢ .3435] .1917) .05762) .2270| -.9174| .587h|2.1293} 1124
.3 | .2981| .1775| .05341| .2389| -.469T7| .6642]|2.0856] .1360

2
2
2
2
2
2
2
.35} .2576| .1627] .05009} .2470| -.0392] .T7692|2.0370} .1603
A | Je2221 1472 Lob75L| L2476 LB3WT| .910T7[1.9826) .1852
451 .1917] .1310] 04556 .2393] 1.0287|1.0983|1.9219} .2108
.10}o .6585| .260k| .10067} .1725 -0 .6430]2.6073 |0
05| .5768| 2492} .0907T6| .1831{-6.648 | .6606]2.5390| .0196
1| 5202} 2374} .08212 195# -2.966 | .6869|2.4712| .0395
.15) .4586] .2250f .OT4TO| .2068|-1.6996| .T7194|2.4045] .0600
2 | 4019} .2121} .068k42 2183 -1.0201f .T7611{2.3380| .0812
25| .3503} .1985| .06322| .2291| -.5522| .8189|2.2712| .1028
.3 | .3036] .1843§f .05901} .2410{ -.1525| .8923{2.2029| .1252
2.1320| .1483

.35| .2620| .1695| .05569 | .2491| .2445| .9911
A | .2253] L1541 L05311 .2497) .T030}1.12L4L|2.058%41 .1721
L4501 .1937) 1379 .05116§ 241k} 1.3022}1.30151.9803 | .1968
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Flgure L.- Tietjen's functicn, (x) = Fx(z) + 1Fs(z) vhere z = ¥o(Uy'aR) ™",
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(a) Chennel flow; parabolic veloclty profile.

Fgure 2.- Reglons vherein an {nfinitesimal sinusoidal disturbance iz amplified or damped in the

presence of & coplapar magnetic field.
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Flgure 3.- Reglons vherein an infinitesimsl disturbance is amplified or damped for flow over a
seml-infinite flat plate in the presence of a transverse magnetic field.
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Figure L4.- Critical Reynolds number &s a function of the megnetic parameter.
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